
The Ultimate
DevOps

Platform Buyer’s Guide

2 https://www.opsera.io/

Software development and the IT industry wouldn’t be where they are today without
the DevOps revolution.

As the tools and best practices evolved, DevOps matured from a set of agile practices
that focused on technological work - automated build, test-driven development
(TDD), continuous integration/continuous delivery (CI/CD), etc. - to a set of tools and
practices that focus on value stream management and delivery.

Gartner identified four drivers that pushed the conversation from isolated DevOps
tools to integrated tooling into DevOps platforms:

1. Cloud adoption and container-native architectures. DevOps tools
are integrated into the overall cloud infrastructure and questions about
elasticity and scaling determine their successful adoption.

2. Need to simplify building and managing DevOps pipelines –
minimize the overhead involved in orchestration, integration, and
governance.

3. Need for security and compliance automation as part of the
DevOps pipeline.

4. Need for end-to-end visibility, traceability, auditing, and
observability into the flow of work – the core drivers for value stream
management.

This paradigm shift readjusted the focus from technical optimization to a
conversation about delivering customer value.

DevOps tools and processes were not viewed as part of Developers’ or Operations’
workflows, but as integrated into the value streams that produce quality products for
the end customers.

Introduction

https://blogs.gartner.com/manjunath-bhat/2020/10/02/the-future-of-devops-toolchains-is-already-here-its-just-not-evenly-distributed/

You might be wondering: “What product should I procure to
increase the productivity of my software and IT team?”

Luckily, this buyer guide will help you answer that question.

And don’t forget to check the checklist at the end of the
guide - it will help you evaluate the best DevOps platform
for your team.

A sneak-peak of what is coming:
1. The challenges in the current DevOps practices and tools.
2. How a DevOps platform addresses those challenges.
3. The different types of DevOps platforms.
4. Which features should you expect from a DevOps platform?
5. The expected costs of a DevOps platform.
6. Common pitfalls to avoid when procuring a DevOps platform.

3 https://www.opsera.io/

4 https://www.opsera.io/

With the growth of different DevOps solutions for niche problems and the increasing
complexity of modern software systems, DevOps teams face a range of challenges
that can make it difficult to achieve their goals.

From managing complex infrastructure and toolchains to ensuring security and
compliance, DevOps teams must navigate a wide variety of obstacles to ensure the
success of their initiatives.

In this context, understanding the key challenges of modern DevOps is crucial for
organizations that want to build and maintain effective DevOps practices and stay
competitive in today’s fast-paced technology landscape.

The challenges of the modern DevOps

Inconsistent tooling

Complex integrations

Different teams may use different tools and technologies, leading to inconsistency
in processes and workflows. This is not just a debate between GitHub vs GitLab
as your preferred product for version control. The inconsistencies make it harder
to standardize processes and quality assurance, keep governance over your
deployments, and introduce efficiencies to streamline your product delivery systems.

Integrating different tools and technologies can be complex. From varying levels of
know-how to different configuration, communication, and deployment standards
between tools, complex integrations lead to delays, potential errors, and increased
costs for overhead. The cost of complex integration is increased after particular
DevOps tools breaking changes and version releases.

 Lack of visibility and transparency

Managing multiple tools and processes across a fragmented DevOps stack can result
in a lack of visibility and transparency across the software delivery pipeline. Each tool
silos data and makes it harder to understand the KPIs across tools and teams. This
can make it difficult to track the progress of software releases, identify bottlenecks,
and collaborate effectively across teams.

5 https://www.opsera.io/

A fragmented DevOps stack can limit cross-functional collaboration between different
teams and stakeholders, making it difficult to achieve a shared understanding of
software delivery processes and objectives. This can result in misaligned goals,
inefficient workflows, duplicated work, underutilized talent, overutilized talent, and
decreased productivity.

Limited cross-functional collaboration

Managing multiple DevOps tools and processes in your fragmented DevOps stack
can make it difficult to implement automation and orchestration across the software
delivery pipeline. This can result in manual errors, decreased efficiency, and increased
costs for the organization.

Lack of automation and orchestration

A fragmented DevOps stack can limit the scalability and flexibility of software
delivery pipelines, making it difficult to adapt to changing business requirements
and customer needs. Not every tool is ready for cloud integrations, parallelized
processing, multithreading, or other technologies that allow the tooling to scale with
the company’s needs and processes.

Limited scalability and flexibility

Increased security risks

Relying on multiple DevOps tools and processes that are not integrated and
standardized across your software development processes raises security risks. Each
additional tool increases the potential attack surface.

Lack of cross-stack standardization, automation,
and monitoring decreases the overall quality of
your software products. Working with a complex
DevOps stack increases the chances of manual
errors, causes duplicated work, introduces
processes of varying quality, and slows down
error resolution.

Lower product quality

6 https://www.opsera.io/

“Nearly 80% of organizations
remain in the middle of their
DevOps journey, experiencing
varying degrees of success at the
team level but not across the
entire organization.”

- Puppet by Perforce, State of
DevOps Report 2023

All of the factors above cause your DevOps initiatives to slow down and delay time-
to-market for your software products. Inconsistent tooling standards, complex
integrations, and limited collaboration add overhead that delays your product
releases. Product quality issues and security threats can result in additional testing
and validation processes that further slow down the release process. Limited
scalability, flexibility, and automation can make it difficult to adapt to changing
business requirements efficiently, causing you to miss opportunities.

If your team is facing some (or all) of these challenges, know that you’re not alone.

Slower time to market

https://www.puppet.com/resources/state-of-platform-engineering
https://www.puppet.com/resources/state-of-platform-engineering

7 https://www.opsera.io/

A DevOps platform is a set of tools, processes, and technologies that facilitate the
integration and automation of DevOps tools and processes. It provides a unified
platform that enables teams to collaborate, streamline workflows, and automate
processes across the entire software delivery pipeline.

Unlike other DevOps tools, DevOps platforms are tool-agnostic. They connect to
existing tools and ingest data from all phases of the software product delivery process
into a single engineering platform, making it easier to deploy, test, share, and monitor
DevOps pipelines.

The solution: A modern DevOps solution

What is a DevOps platform?

8 https://www.opsera.io/

Common features found in DevOps platforms

The DevOps platform looks like the best invention since sliced bread. How does it
achieve this glorious status?

Automate the integration of existing tools into a single DevOps
platform.

Automating the provisioning and management of infrastructure
using code.

Logging, monitoring, collecting metrics, and analyzing data to identify
issues, spot opportunity gaps, and improve performance.

Automating the build, testing, and deployment of
software applications.

Automating the configuration of software applications and
infrastructure.

Providing tools for teams to communicate and collaborate
effectively throughout the software delivery pipeline.

The platform needs a secure and scalable way to store and
share secrets across your toolchains and pipelines.

Tool integration

Infrastructure
as Code (IaC)

Operational
insights

Continuous Integration/
Continuous Delivery (CI/CD)

Configuration
management

Collaboration and
communication:

Secrets management
and communication:

A DevOps platform typically includes tools and technologies for:

9 https://www.opsera.io/

How does a DevOps platform solve today’s DevOps challenges?

DevOps challenge How does a DevOps
platform solve it?

Inconsistent tooling
Standardize tooling configuration, management,
access right granting, monitoring, and deployment
through the platform-imposed standards.

Complex integrations Simplified one-click pre-built integrations.

 Lack of visibility and
transparency

Cross-platform metrics and unified insights in
dashboards.

Limited scalability
and flexibility

CI/CD pipeline parallelization, reusable pipelines,
pipeline templatization.

Lack of automation
and orchestration

End-to-end automated CI/CD and IaC platforms that
execute via multiple triggers.

Limited cross-functional
collaboration

Centralized logic for all your DevOps deployment
into a single platform; alerts and notifications for
security pipeline, and audit events; integration with
collaboration and communication tools.

Increased security risks

Automated security tests with security-as-code,
proprietary security solutions, consistent cross-platform
role-based access control, and additional features like
Bring Your Own Vault and Approval Gates.

Lower product quality Automated quality tests with quality-as-code, extensive
integrations with quality assurance DevOps tools.

Slower time to market Acceleration via additive effects of automation,
streamlining, standardization, and increased scalability.

Don’t sweat the details, we’ll explore the features provided by DevOps platforms in-
depth in a later chapter.

DevOps platforms were developed as a response to the issues DevOps teams were
facing in their software delivery pipelines. As such, the DevOps platform helps to
tackle these problems with a combination of features:

10 https://www.opsera.io/

By integrating and centralizing the entire DevOps stack,
DevOps platforms unlock many benefits for their users:

Benefits of using a unified DevOps platform

The plug-and-play design of DevOps platforms allows users to test different tools
and processes without the integration, management, monitoring, and governance

Increased experimentation

By automating CI/CD pipeline orchestration, tests, and security probing, the DevOps
teams relying on DevOps platforms can spend less time figuring out which weak link
between different tools failed and more time building products.

Increased productivity

DevOps platforms offer metrics that track performance across the entire software
development lifecycle. Making it easier to spot bottlenecks and delays, and
recuperating the lost time. Additionally, monitoring based on the entire end-
to-end product development lifecycle offers better insights into which levers to
pull to increase efficiency. Instead of optimizing individual segments of product
development (“Is the Jenkins config written correctly?”) companies can focus their
efforts on the aspects of the end-to-end pipeline that have the biggest impact on the
bottom line.

Improved visibility and transparency

Teams’ work is united into a single platform, which makes it easier to collaborate,
even across functional silos and different groups. Talent is focused on end-to-end
pipelines instead of spending time tweaking specialized tools.

Better cross-functional collaboration and communication

The unified platform streamlines the previously time-consuming management
processes without adding value to the DevOps processes. From single-point tool
configuration to access control, the centralization of all the DevOps process logic into
a single platform releases teams from tedious work.

Simplified management

“We had built our own pipelines
and tooling over a two-year
period ... The Opsera team built
the integration in two days. I feel
like the holistic approach that
the Opsera is taking to solve the
Orchestrating problems is a key
step in the evolution of DevOps.”

- Kevin Railsback, Senior
Director of Technical Operations

at Reflektion

All of the benefits above result in faster productization. Companies spend less time
worrying about integrations, manual CI/CD steps, error debugging, security tests,
traceability, etc., and let the DevOps platform handle the heavy lifting, so your
technical talent can spend more time on product development. The best part? Each
automation the platform provides is additive, increasing the time savings non-
linearly.

Faster time to market

By automating testing and deployment processes, a DevOps platform can help ensure
that software is thoroughly tested and deployed consistently and reliably. This can
improve the quality of software releases and reduce the risk of defects or downtime.

Improved product quality

By joining all tools into a single platform, DevOps teams can standardize access
controls and security tests across all their productization initiatives. Lowering
the potential attack surface and mitigating the risks of “missing something”. By
automating security tests across the entire DevOps stack, teams can be more
confident in their deployments.

Increased security

overhead. The platform takes care of the back office work. DevOps teams can
experiment with different tools and find those that increase productivity and
have a positive impact on value delivery metrics (time to market, product quality,
responsiveness to errors, etc.).

11 https://www.opsera.io/

12 https://www.opsera.io/

Must-have features of a DevOps platform

A DevOps platform typically includes tools and technologies for:

1. Tool integration
2. Continuous Integration/Continuous
3. Delivery (CI/CD)
4. Infrastructure as Code (IaC)
5. Configuration management
6. Operational insights
7. Collaboration and communication
8. Security, governance, and compliance
9. Secrets management

But not all platforms are built the same. Some are great for keeping security
tight but don’t really make your developers more efficient.

Let’s figure out how to compare them with a deep dive into the details of the
technologies, features, and offerings of the best DevOps platforms.

Keep your eyes open for:

Industry case studies
and best practices

Must-have features No, these are not negotiable.

Advanced features
Do you need this feature? No. Will
you be glad to have it? Absolutely!

Pro tips Not every buying decision needs to be hard.
Especially if you get the inside scoop.

Get ready to be inspired by industry leaders.

13 https://www.opsera.io/

One place for all your integrations

Got a favorite tool? Luckily, you can bring it along to your DevOps platform. One of the
most common ways DevOps platforms add value is by integrating DevOps tools out
of the box.

To evaluate a DevOps platform, assess the platform’s contribution to the must-have
integration features:

Ease of integration Does the platform make integration a one-time effort, or do
you need to configure tool integrations with every change?
Platforms that simplify integrations are a time saver. You
integrate a tool once and let your team spend time using the
tool instead of configuring it.

Tools break. And they have this pesky habit of breaking just
before a looming deadline. Whether it’s an API endpoint
change or a version release incompatibility, each massive
change inevitably leads to integration maintenance efforts.
Look for platforms that actively work on maintenance of
their provided integrations and therefore save you time.

What about advanced integration features? What should you look for?
Some DevOps platforms offer additional advanced integration features like:

Configuration
management

Automate the configuration of an integrated tool once, and
re-use the configuration across all your deployments to
save time, standardize tool usage across your operations,
and increase quality controls. Separate configurations can
be used for your development, testing, and production
environments, keeping the development branches
separated but consistent.

Keep your secrets hidden from prying eyes and let the
platform take care of accessing and securing the right user
credentials, tokens, and certificates whenever your team
uses the DevOps tool.

Maintenance

Secrets
management

14 https://www.opsera.io/

Toolchain automation

DevOps teams rarely use just one or
two tools for all their processes and
tasks. Instead, they use multiple tools
to achieve continuous integration,
continuous delivery, automation, and
collaboration. This is when teams rely
on toolchains instead of individual
tools.

“A DevOps toolchain is a
collection of tools, often
from a variety of vendors,
that operate as an
integrated unit to design,
build, test, manage,
measure, and operate
software and systems.”

For example, a team can use Jira for
planning and workflow tracking, Jenkins
for continuous integration, LogStash for
log management, SonarQube for code
security, and ZooKeeper for monitoring.

The best DevOps platforms allow you
to declare customizable toolchains that
bundle and deploy your preferred tools
together into a single toolchain.

- Atlassian

15 https://www.opsera.io/

Automate end-to-end with the CI/CD pipeline builder

CI/CD pipeline builders allow you to declare pipelines that chain DevOps tools
together into a single continuous integration/continuous delivery process.

There are many advantages to CI/CD pipeline builders:

1. Reuse Once a pipeline is declared and deployed, you can reuse it at
each code change. Saving you engineering time and effort.

2. Embedded
quality and
security standards

Because the quality and security standards are defined as
a necessary step in the pipeline, you can deploy the CI/CD
pipeline with more confidence that everything is according to
governance and productization standards.

3. Lower human
error rate

Instead of building and triggering each step manually, the
pipeline can be triggered automatically in an all-or-nothing
manner. Lowering the chances of introducing human errors
either by failing to execute a CI/CD pipeline or by missing a step.

4. Scale
CI/CD pipelines are the first step to making your DevOps
processes scalable. Because they are reusable, they can be
copied and used over many different workflows, projects,
and environments.

Operating with declared toolchains
- instead of individual tools - has
multiple benefits:

Improved standardization.

Governance over your tooling - Keep
granular control over the DevOps stack
by team, product, dev environment, and
infrastructure.

Increased quality control (specify the
minimal security checks for each CI/CD
pipeline),

Save time when deploying tools.

Pro tip: check whether
your DevOps platform
provides role-based
access control for
toolchain automation,
to lower overhead and
risks while increasing
control and quality.

Improve engineering productivity with the right CI/
CD pipeline builder features

Most CI/CD pipeline builders offer users:

1. Intuitive pipeline
declaration

The best DevOps platforms ease pipeline creation via
no-code features such as a drag-and-drop UI. This
saves time when building new pipelines and simplifies
the understanding of existing complex workflows. Some
DevOps platforms offer script-based pipelines. These are
good, but more time-consuming to create and manage.

2. Multiple trigger
options

Declared pipelines can be triggered based on events,
time schedulers, or manually.

3. Logging and
alerts

Each declaration, modification, and execution of the
pipeline should be logged to comply with governance and
lineage demands. This helps your DevOps team debug
errors once they occur. Additionally, users should have
the option to set alerts for successful/failed pipeline steps.

4. Pass/fail logic for
each step

Define the threshold above which a pipeline step passes
or fails.

CI/CD pipeline builders speed up the feedback loops that help your developers
improve productivity even faster.

16 https://www.opsera.io/

17 https://www.opsera.io/

Advanced pipeline builder features - What to look for?

DevOps platform can offer advanced pipeline builder features that help you set
up your CI/CD pipelines even faster:

Templetizable and shared pipelines. Turn your existing pipelines into
templates that can be shared between individual contributors, teams, and
product departments. Templates don’t just save time when building a new
pipeline, they can also be used to enforce organization-wide security and quality
standards.

Role-based access control (RBAC). RBAC allows you to set up granular access
control over your pipelines and shared templates, specifying which part of the
pipelines (triggers, tool configuration, steps, etc.) users can alter. Say hello to
increased security and shared quality standards!

Pipelines search functionality. Companies build many pipelines and not all
of them are used in regular DevOps processes. DevOps even have horror stories
about the forgotten job that crashed their system. Keep an eye on what’s running
by searching pipelines with custom tags, filters by product/author, and sorting by
creation/run date. Find obsolete pipelines and archive them.

Refined execution control. Want to trigger a pipeline right after another has
finished? Or maybe speed up the CI/CD process by running two pipelines in
parallel? Execution control over pipeline dependencies allows you to set up rules
in place that automate the complex logic behind running pipelines manually.

Infrastructure-as-code (IaC) pipelines. Pipelines can also be used to specify
and spin up infrastructure. IaC pipelines are a great feature for keeping your
environments consistent, reproducible, and monitored.

Whether basic or advanced, CI/CD features will shave hours off your DevOps time.

1.

2.

3.

4.

5.

18 https://www.opsera.io/

Industry case study: City of Hope uses Opsera’s CI/CD
pipeline builder to build DevOps pipelines 80% faster

City of Hope is a nationally-recognized cancer center that has been
providing outstanding care to patients for more than 100 years.
City of Hope is not a software company, however, a huge amount
of data is created from the medical treatments and reports to be
analyzed. The organization needed custom software applications
to provide ongoing and timely analysis of data in their precision
medicine data and systems division.

The challenge
Their previous software development process was time-
consuming and manual. As part of the transformation process,
City of Hope’s goal was to create a new software development
process from scratch. They were looking to standardize their SDLC
process with security and quality gates.

The solution
With Opsera, City of Hope was able to select the tools from the
toolchain automation catalog and integrate them with existing
tools using tools like source code management, planning, and
collaboration tools. Also, using no-code pipelines, the City of Hope
DevOps team built the pipelines with quality and security gates
(SAST, Vault, Unit testing) to automate the end-to-end software
delivery management.

The results
With the new Opsera’s CI/CD pipeline builder, City of Hope was
able to build a holistic and integrated DevOps pipeline in 30
minutes instead of the previous 2.5 hours - an 80% increase in
productivity. While introducing new tools, deployment abilities,
and additional security gates.

Read the full case study.

https://www.opsera.io/case-study/city-of-hope

19 https://www.opsera.io/

DevOps platforms offer integrations with 3rd Party monitoring (AppDynamics,
Dynatrace, Nagios Monitoring) and logging (ZooKeeper, Kibana, Elastic Stack,
Logstash) DevOps tools.

Additionally, the best-performing DevOps platforms offer their own logging and
monitoring features that span the entire platform ecosystem:

DevOps platforms promise to unify insights across your entire DevOps toolchain. No
need to spend time on 10+ different tools trying to get one or two tool-specific KPIs.
The platform takes care of metric computation and dashboarding for you.

Improve observability with the right monitoring
and logging features

DevOps platforms log every platform event. From user
creation, access revoking, and pipeline modifications.
These logs are useful for error debugging, compliance,
traceability, and building cross-platform metrics. The best
players even offer alerts for important audit log changes
(updating a tool configuration or transferring ownership of
an asset).

Some DevOps platforms allow you to inspect the raw
(non-aggregated) logs yourself, export the logs, and
even analyze them. Sure, pre-built analyses are swell.
But digging into the logs yourself empowers you to trace
issues down to their root causes.

DevOps platforms most commonly expose monitoring by
building upon the solutions presented so far. Push audit
logs to a 3rd Party tool, set up alerts, or even monitor your
resources via metrics and KPIs within unified insights.

Get the entire picture with unified insights

Audit logs and
alerts

Inspectable and
exportable logs

Monitoring

20 https://www.opsera.io/

Developer productivity metrics collectively provide insights into developer
productivity, collaboration, and efficiency within the development process.
When broken down by user, developer productivity metrics help you assess
the individual contributor’s output, identify performance gaps, and set up
roadmaps for talent improvement.

Increase developer productivity with developer productivity metrics

Product quality metrics - make sure your software is up to standards

Product quality metrics give you a quick overview of software product
quality issues and standard abiding. They can be used to spot bugs
before they are shipped to production, determine the speed of error
resolution, and set benchmarks for improving issue response time.

“With this automated
solution [Opsera DevOps
platform], the productivity
of our engineers improved
by 25%. Now, I can see the
development and quality
metrics of individual
contributors.”
- Kishore Gandham, Founder

& CEO KeyWest Networks

The specific metrics reported differ between DevOps platforms. Look for the following
groups of metrics.

Which metrics should the DevOps platform report on?

21 https://www.opsera.io/

DORA performance metrics - 4 metrics that best predict success

DevOps Research and Assessment (DORA) conducted research over the
past eight years surveying more than 33,000 professionals around the
world (the largest and longest-running research of its kind) to determine
what metrics software organizations should track.

DORA determined 4 metrics that measure software delivery and
operational (SDO) performance:

1. Deployment frequency - Frequency of your organization deploying
code to production or releasing it to end users. The metric ranges from
on-demand (multiple deploys per day) to once every 6 months.

2. Lead time for changes - The time it takes to go from code committed
to code successfully running in production. The metric ranges between
one day to 6 months.

3. Change failure rate - The percentage of changes to production
or released to users result in degraded service (e.g., lead to service
impairment or service outage) and subsequently require remediation
(e.g., require a hotfix, rollback, fix forward, patch). The metric ranges
between 0-60%.

4. Time to restore service - The time it takes to restore service when a
service incident or a defect that impacts users occurs (e.g., unplanned
outage or service impairment). The metric ranges from less than a day to
1 month.

Among all the tested metrics, these four DORA metrics showed the
highest predictive accuracy, correlating highly with fast and quality
software delivery and exceptional operational performance.

https://dora.dev/#:~:text=The%202022%20Accelerate%20State%20of,running%20research%20of%20its%20kind.

22 https://www.opsera.io/

Pipeline metrics - keep your end-to-end pipelines performant

Pipeline metrics provide valuable insights into the performance, efficiency,
and reliability of the DevOps pipeline. By monitoring and analyzing
these metrics, teams can identify areas for improvement, optimize their
processes, and deliver software more effectively and reliably.

Industry case study: Measure pipeline metrics and
improve CI/CD pipeline performance

Reflektion is an AI-driven customer engagement platform,
located in San Mateo California, that offers shopper insights and
product intelligence solutions for retailers and brands. Leading
retail brands such as TOMS, Ann Taylor, Sur La Table, Godiva,
and Destination XL rely on Reflektion’s platform.

The challenge
Reflektion had two different CI tools (Jenkins and Codeship)
and was unable to establish the relationship between the two
for the last couple of years. This caused them to overspend time
by reviewing multiple tools and consoles to troubleshoot the
issues for their builds, deployment, and other operational issues
with their DevOps ecosystem.

The solution
Opsera DevOps platform helped them with the integration
of both CI tools (Jenkins and Codeship) without any custom
code from Reflektion’s DevOps team and provided end-to-
end visibility across their build and deployment process. This
enabled them to identify the issues and correlate them across
multiple DevOps tools in just a matter of minutes.

The result
The pipeline mean time to resolve build issues (MTTR) was
reduced by 20%. While providing end-to-end visibility and logs
in a single place (Opsera’s platform).

Read the full case study.

https://www.opsera.io/case-study/reflektion

23 https://www.opsera.io/

Security metrics - ensure security by keeping an eye on the right
KPIsright KPIs

Security metrics play a crucial role in evaluating and improving the
security posture of software applications. By monitoring and analyzing
these metrics, teams can proactively identify and address security
vulnerabilities, enhance code quality, and ensure the robustness and
reliability of their software.

Without the ability to select metrics and build custom dashboards, you’ll always
spend more time than necessary in extracting insights from your data.

When you customize dashboards and reporting - by individual contributor, team,
product, pipeline, or another breakdown - you can easily spot the trends, identify
productivity bottlenecks, and act upon the data.

DevOps platforms go beyond the sum of the quality and security tests they integrate.
The security and quality benefits can be seen on multiple levels:

Don’t settle for dashboards that you can’t customize

Security and quality

Standardize tooling

Standardize the required security and quality tests by registering and sharing the
quality and security tools to your toolchain automation.

Democratize tooling

Give your team the choice to play with their preferred tools. Standardization helps
you keep quality control. But also give freedom to teams to build up their preferred
DevOps stacks in the toolchain automaton that works best for them. Freedom,
creativity, and innovation go hand in hand.

24 https://www.opsera.io/

Codify test logic in security-as-code and quality-as-code tests

Make tests necessary by building them as a requisite step of your CI/CD pipelines.
Without a test, the pipeline can’t pass.

Lower barrier to test

Use audit logs and security and quality metrics to quickly spot errors and resolve
them faster via log inspections. Set up alerts to respond quickly to any issues.

By creating reusable, shareable, and even templatizable pipelines your organization
lowers the psychological barriers to testing by diminishing the effort required to
embed tests into the CI/CD pipeline.

Resolve security and quality issues faster

Industry best practice: Shift-left security

In DevOps, security scanning and evaluations are traditionally
performed at the end of the software development lifecycle. As a result,
resolving security vulnerabilities has become complicated, expensive,
and time-consuming. And DevSecOps emerged as the right solution to
this challenge. To do so, DevSecOps follows the Shift-Left approach.

The Shift-Left approach in DevSecOps encourages the teams to
integrate security into the SDLC lifecycle as early as possible. It moves
security from the right (end) to the left (beginning) of the DevOps SDLC
lifecycle. So, in DevSecOps, the security is baked into the development
process from the beginning, allowing the teams to identify security
threats early and ensure those threats are addressed immediately.

Additional advanced security features

Some DevOps platforms take security even more seriously and offer advanced
features and tools to help secure your software development initiatives:

Owned solutions to manage secrets and protect sensitive data
From encryption to access barriers, DevOps platforms develop their proprietary
security features to protect your configurations, passwords, tokens, and other
sensitive data.

Role-based access control (RBAC) at every level
RBAC is a critical component of preventive security. By centralizing all access controls
within the platform and offering features to manage roles, companies lower the
attack surface of user credentials.

Bring Your Own Vault
Vaults encrypt secrets to help prevent unauthorized users from gaining access.
They act as active storage containers for secrets (passwords, API keys, SSH keys, or
RSA tokens) as well as an account management system for dealing with multiple
privileged accounts. Users can configure their own vault providers to keep secrets
secure even from the DevOps platform.

Approval Gate
Approval gates configurations allow users to define the approval for a particular
pipeline step execution. The configuration determines if the step can be advanced for
execution based on the approver’s response to the requests. The approver can choose
to either approve or reject the request. This feature is especially useful for sensitive
pipelines.

“Opsera’s approach of no code addition of
security gates and thresholds into every stage
of the pipelines by out-of-the-box integration
to a choice of security tools greatly improves
the proactive security posture for software
delivery. Unified real-time security insights are
very useful for security managers and add to
the value proposition.”

- Abhay Salpekar, Director of
Engineering, Snowflake

25 https://www.opsera.io/

26 https://www.opsera.io/

Scalability

The core features of a DevOps platform empower companies with greater scaling
ability:

1. Reusable CI/CD pipelines can be used for multiple use cases, environments, and
products. Cutting development time whenever you reuse a pre-built pipeline and
lowering the chances of new errors.

2. Infrastructure-as-code pipelines can build new infrastructure with one-time
configuration and provisioning efforts. Scale your infrastructure to new projects,
teams, and environments with a single click.

3. Pipeline parallelization can augment scaling results. No need to wait for one
pipeline to finish before you run another. Simply execute in parallel to get more work
done at the same time.

4. Pipeline templetization and toolchain declaration can standardize quality and
security practices across the organization. Making sure you don’t sacrifice the quality
or security of your products as you scale your operations and processes.

Pricing

Prices range from no upfront costs for Free and Open Source Software (FOSS) that
offer bare-bone functionalities to four figures per month for best-in-class enterprise
DevOps platforms.

And these solutions are incomparable - FOSS requires lower initial investments
(licensing fees, set up fees, subscriptions, etc.), but is more costly down the line
(customization, maintenance, error resolution, etc.), and vice versa for enterprise
vendors.

27 https://www.opsera.io/

To determine whether the pricing makes sense for your business, do two things:

What to include in the TCO of your existing solution?

This includes all the hired external consultants
and in-house engineering hours spent integrating,
maintaining, updating, and debugging your
integration solution.

Evaluate the costs associated with setting up and
implementing the DevOps pipelines. This can include
expenses related to installation, configuration,
customization, training, and consulting services.

Consider the personnel costs associated with
managing and operating your existing DevOps
solution. This includes salaries, benefits, training,
and any additional staff required for deployment,
maintenance, and support.

These are the hardest to calculate. Perform a back-
of-the-envelope calculation anyway to estimate
the potential cost savings and additional revenue
of time-savings gained from DevOps platforms and
increased speed to market.

Calculate your current
integration costs

Consider CI/CD pipeline
implementation costs

Assess staffing costs

Determine your
opportunity costs

Evaluate a solution (look for vendors that offer a free trial).

Calculate if the Total Cost of Ownership (TCO) for your existing
solution outweighs the vendor price tag.

1.

2.

Though the TCO calculations are hard to make and are rough estimates at best, they
can be a great tool for assessing whether a DevOps platform showcases a positive ROI,
or whether the price tag is not even in the same ballpark as your existing solution.

28 https://www.opsera.io/

Common pitfalls to avoid

Many DevOps platforms look good on paper but live short of the hype once they are
implemented. To avoid committing time and resources to the wrong solution for your
use case, consider the common pitfalls to avoid when selecting your DevOps platform
vendor.

Does the platform cover all your integration needs?

Check if the DevOps platform covers all the tools your DevOps team is currently using.
It would be a shame if you went through the entire tool provisioning conversations
only to realize half your tools can’t be integrated.

When comparing your existing DevOps stack to what the vendor offers, think ahead.
What other tools did your team want to test, but couldn’t due to time constraints and
integration complexity? Chances are your vendor

Pro tips for tool integration coverage:

Prioritize DevOps platforms with a higher number of
integrations. The more tooling integrations a platform
offers, the higher the chance it will cover your existing and
future needs.

Ask the DevOps platform what’s their usual process for
including a new tool that is currently not covered. Some
platforms offer generic integrations (via webhooks or
APIs) that you can easily code yourself, an open-source
community that develops integrations, or offer a service to
build a new integration for you (integration-on-demand).

29 https://www.opsera.io/

Follow customer satisfaction and industry praise, not
promotional materials

Many vendors know how to sell themselves. Don’t trust marketing and sales brochures,
check how satisfied the customers who regularly use the DevOps platform are.

The best places to check for customer feedback are reputable industry vendor
assessment platforms such as G2.

Customer feedback is a great place to start, but the above-mentioned platforms also
offer in-depth industry analyses comparing tools and recognize the best performers
with awards. Look for award badges that signify best-in-class performance.

https://www.g2.com/products/opsera/reviews

30 https://www.opsera.io/

Are the offered metrics and KPIs informative or regurgitated?

Should you look for DORA and no other metrics?

Almost every DevOps platform offers intelligence and insights. The distinguishing
factor between leaders and laggers in this space is their ability to compute metrics
across multiple tools covering the entire DevOps lifecycle and multiple toolchains.

Check which metrics are offered by your DevOps platform. Chances are they just
export GitLab/GitHub metrics, which don’t add value, since those can be viewed
within the tool themselves.

Pro tip

A good rule-of-thumb for evaluating metric
informativeness is their number. Platforms that
pre-compute more KPIs are more likely to offer the
insights you need.

Companies sometimes track performance with metrics that seem sound but don’t
correlate with software delivery performance.

A common example is “lines of code written”. On the surface, the metric seems to
measure software development productivity, but without a link to product quality
and value-added, the metrics can quickly become a vanity tag instead of a key
performance indicator.

So why pick DORA metrics instead of “lines of code written” or another metric?

The main argument is data-driven metric validation. The 4 DORA metrics distinguish
high-performing teams from low-performing ones, consistently, across companies
of all sizes and DevOps complexities. For example, high performers have 417x more
deployments than low performers, on average.

31 https://www.opsera.io/

Don’t mistake local optima for overall performance improvement. Track the metrics
which follow value delivery and correlate with performance.

Don’t just track metrics, track KPIs

Metrics are quantitative measures that help organizations track
their progress and performance.

However, not all metrics are Key Performance Indicators (KPIs).
KPIs are specific metrics that have been identified as critical to an
organization’s success and are used to measure progress toward a
specific business goal or objective.

To turn a metric into a KPI, you need to follow these steps:

1. Define your business objectives
Identify the goals or objectives that are most important to your organization.

2. Identify the corresponding metrics
Determine which metrics are relevant to measuring progress towards those
objectives. The most critical metrics that directly impact your business objectives are
your KPIs.

3. Set targets
Set specific targets for each KPI that align with your business objectives. Usually, this
is a benchmark or threshold. A metric needs to be above (e.g. deployment frequency)
or below (e.g. number of bugs) a given target.

So don’t fall for the DORA-only pitfall. Yes, make sure your DevOps platform tracks
DORA. But also make sure you can look at follow-up metrics to dig into the nitty
gritty details of why a DORA metric is doing well/poorly.

But you might ask yourself: Why would I need any other metric except for DORA
metrics? DORA metrics have high predictive validity but offer low contextual
information. Once the DORA metrics help you identify bottlenecks, you can turn to
other metrics to understand how to resolve those bottlenecks.

For example, a low deployment frequency can be due to a prolonged review process,
issues with code quality tests, infrastructure-as-code failures, or a myriad of other
causes.

32 https://www.opsera.io/

Remember, a metric is just a number. It becomes a KPI when it is linked to a specific
business objective, has a target, and is regularly monitored and analyzed to drive
action.

Pro tips for buyers

1. To better track KPIs, pick platforms that allow you to break
down and analyze metrics by:

• Time
Has the metric improved month-over-month?

• Product
Which product needs your attention most to improve its value
delivery?

• Team
Which team is performing better and which needs your assistance?

• Individual contributors
Metrics are a great conversation starter for empowering
individuals, identifying talent gaps, and bringing objectivity to
your PRs and 1-on-1s.

2. Keep an eye on your most important KPIs by setting up alerts
and notifications. Push notifications to Slack, email, Microsoft
Teams, or others can either be used to celebrate victories (10
deployments in a day!) or to alert you to a problem before it
escalates (a critical number of pipelines failed to build). Shortlist
platforms that offer alerts and notifications for crucial metrics.

4. Monitor and analyze
Track the performance of your KPIs over time, and analyze the data to identify trends
and opportunities for improvement.

5. Take action
Use the insights gained from analyzing your KPIs to make informed decisions and take
actions that will drive progress toward your business objectives.

Ease of use leads to success

No one wants to work with a piece of technology that is a frustration superstar to set
up and use.

Check how intuitive the platform is by running a demo with the provider.

Additionally, check for features that lower the barrier to entry for using the DevOps
platform:

33 https://www.opsera.io/

Set your team up for success by
giving them solutions that delight
them, not dishearten them.

• On-demand webinars for
advanced use cases and industry
best practices

DevOps vendors that care about their
users constantly update new content
that teaches and empowers their
users how to get the most out of their
product.

• No-code, drag-and-drop features
No-code features speed up pipeline
development. But they also lower
the barrier to entry for new talent
joining your team, reusability across
different contexts, and inclusion of
non-technical experts on your time
onto your DevOps practices.

• Extensive documentation with
how-to guides

This will help empower your
workforce with self-service
knowledge for using the platform
independently from the platform’s
account managers.

34 https://www.opsera.io/

Checklist - What to look for when buying a
DevOps platform?

[Drum roll] The moment we’ve all been waiting for is here: say hello to the buyer
checklist!

We’ve summarized all the crucial features of a DevOps platform in the following
checklist. So you don’t forget or miss any important steps.

Fill in the checklist as you evaluate your tool of choice.

We’ve already pre-filled Opsera - one of the best DevOps platforms on the market
right now - as an example to follow along.

Feature Opsera Vendor 2 Vendor 3

Integration

Number of integrated tools 80+

Covers all existing DevOps tools

Covers future DevOps tools

Generic integration capabilities (webhooks,
APIs, integration-on-demand)

Easy to use: One-time integration effort

Platform takes care of integration
maintenance

Automated configuration
management

Secrets management

35 https://www.opsera.io/

Feature Opsera Vendor 2 Vendor 3

Toolchain automation

CI/CD pipeline builder

Declare and deploy custom toolchains

Role-based access control over toolchains

Intuitive pipeline builder (no-code,
drag-and-drop)

Pipeline alerts for success/fail

Event-based triggers

Customizable thresholds and definitions of
pipeline pass/fail

Time-scheduled triggers

Reusable pipelines

Role-back access control for pipelines

Manual triggers

Shareable pipelines

Pipelines search functionality

Multi-level logging - info (create, update,
delete), warning, errors

Templatizeable pipelines

36 https://www.opsera.io/

Feature Opsera Vendor 2

CI/CD pipeline builder

Observability: Monitoring and logging

Unified insights

Refined execution control

Infrastructure-as-code-pipelines

Creates audit log

Monitoring via audit log alertslog

Customizable audit log alertslog

Exposes audit log for analysis and
export

Monitoring via metrics and insights

Cross-platform metric reporting (not just
individual tool reporting)

Product quality metrics

Developer productivity metrics

DORA performance metrics

Monitoring via 3rd Party integrations

Number of out-of-the-box metrics 150+

Vendor 3

37 https://www.opsera.io/

Feature Opsera Vendor 2

Unified insights

Security and quality

Security metrics

Integrates with tools providing security
tests (SAST, DAST, SCA, container security
testing, IaC security testing, vulnerability
scanning, and authentication and
authorization testing)

Insights notifications for KPIs

Role-based access control at every
platform level

Approval Gateplatform level

Customizable dashboards

Encrypts and secures secrets out-of-
the-box

DORA performance metrics

Bring Your Own Vault

Security alerts

Pipeline metrics

Integrates with tools providing quality
tests (unit, integration, functional,
performance, load, stress, regression, and
acceptance tests)

Vendor 3

38 https://www.opsera.io/

Feature Opsera Vendor 2

Pricing

Ease of use

Customer satisfaction

Free trial

No-code, drag-and-drop features

Extensive documentation with how-to
guides

On-demand webinars for advanced use
cases and industry best practices

Average customer satisfaction on G2 4.6/5

5

Scalable

Number of recent awards for best-in-class
performance

Platform ROI outweighs the cost

Vendor 3

	Check Box 7: Off
	Check Box 10: Off
	Check Box 13: Off
	Check Box 16: Off
	Check Box 19: Off
	Check Box 22: Off
	Check Box 8: Off
	Check Box 11: Off
	Check Box 14: Off
	Check Box 17: Off
	Check Box 20: Off
	Check Box 23: Off
	Check Box 43: Off
	Check Box 110: Off
	Check Box 54: Off
	Check Box 44: Off
	Check Box 111: Off
	Check Box 55: Off
	Check Box 45: Off
	Check Box 56: Off
	Check Box 64: Off
	Check Box 46: Off
	Check Box 57: Off
	Check Box 65: Off
	Check Box 47: Off
	Check Box 58: Off
	Check Box 49: Off
	Check Box 112: Off
	Check Box 59: Off
	Check Box 50: Off
	Check Box 113: Off
	Check Box 60: Off
	Check Box 51: Off
	Check Box 61: Off
	Check Box 67: Off
	Check Box 52: Off
	Check Box 62: Off
	Check Box 68: Off
	Check Box 53: Off
	Check Box 63: Off
	Check Box 70: Off
	Check Box 71: Off
	Check Box 73: Off
	Check Box 84: Off
	Check Box 80: Off
	Check Box 74: Off
	Check Box 86: Off
	Check Box 92: Off
	Check Box 96: Off
	Check Box 94: Off
	Check Box 97: Off
	Check Box 81: Off
	Check Box 87: Off
	Check Box 75: Off
	Check Box 76: Off
	Check Box 78: Off
	Check Box 88: Off
	Check Box 82: Off
	Check Box 79: Off
	Check Box 90: Off
	Check Box 93: Off
	Check Box 98: Off
	Check Box 95: Off
	Check Box 99: Off
	Check Box 83: Off
	Check Box 91: Off
	Check Box 100: Off
	Check Box 101: Off
	Check Box 1011: Off
	Check Box 1020: Off
	Check Box 102: Off
	Check Box 1012: Off
	Check Box 103: Off
	Check Box 1013: Off
	Check Box 1021: Off
	Check Box 104: Off
	Check Box 1014: Off
	Check Box 1024: Off
	Check Box 105: Off
	Check Box 106: Off
	Check Box 1016: Off
	Check Box 1022: Off
	Check Box 107: Off
	Check Box 1017: Off
	Check Box 108: Off
	Check Box 1018: Off
	Check Box 1023: Off
	Check Box 109: Off
	Check Box 1019: Off
	Check Box 1025: Off
	Check Box 1010: Off
	Check Box 1015: Off
	Check Box 1027: Off
	Check Box 1031: Off
	Check Box 1035: Off
	Check Box 1028: Off
	Check Box 1029: Off
	Check Box 1030: Off
	Check Box 1032: Off
	Check Box 1034: Off
	Check Box 1036: Off
	Check Box 1033: Off
	Text Field 1:
	Text Field 3:
	Text Field 2:
	Text Field 4:

